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ABSTRACT

The butterfly diagram of the solar cycle is the equatorward migration of the emergence latitudes
of sunspots as the solar cycle evolves. Revealing the mechanism for the butterfly diagram is essential
for understanding the solar and stellar dynamo. The equatorward meridional flow at the base of the
convection zone (CZ) was believed to be responsible for the butterfly diagram. However, helioseismo-
logical studies indicate controversial forms of the flow, and even present poleward flow at the base of
the CZ, which poses a big challenge to the widely accepted mechanism. This motivates us to propose
a new mechanism in this study. Using a data-driven Babcock–Leighton–type dynamo model, we carry
out numerical simulations to explore how the latitude-dependent radial flux transport a↵ects the lat-
itudinal migration of the toroidal field, under di↵erent meridional flow profiles. The results indicate
that when the radial transport of the poloidal field at higher latitudes is su�ciently faster, the toroidal
fields of a new cycle at higher latitudes are generated earlier than that at lower latitudes, and vice
versa. Thus, the butterfly diagram is suggested to correspond to the time- and latitude-dependent
regeneration of the toroidal field due to the latitude-dependent radial transport of the poloidal flux.
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1. INTRODUCTION

The appearing latitudes of the sunspots move closer to the equator as the solar cycle evolves (Maunder 1904;
Hathaway 2015), thus forming the butterfly-like pattern of the time–latitude diagram of sunspots. This butterfly
diagram provides a strong constraint on the solar dynamo models (Charbonneau 2020). Revealing its mechanism is
at the center of understanding the solar magnetic cycle and even the stellar magnetism that maintains starspots.
The solar cycle is believed to be attributed to the large-scale dynamo process (the periodic conversion between the

poloidal and toroidal magnetic fields mediated by the convective flow; Karak et al. (2014); Charbonneau (2020)). The
locations of the sunspots represent the distributions of the subsurface toroidal fields. The first attempt to explain the
butterfly diagram in the framework of the dynamo theory is from Parker (1955), who suggests that an equatorward
dynamo wave of the toroidal field is responsible for the equatorward migration of the sunspots. Based on the Parker–
Yoshimura rule (Parker 1955; Yoshimura 1975), an equatorward propagation of the dynamo wave requires the rotation
rate to increase with the depth for the positive ↵-e↵ect in the northern hemisphere, which is expected for the ↵-e↵ect
in the bulk of the convection zone (CZ) due to cyclonic turbulence or the ↵-e↵ect near the surface due to the Babcock–
Leighton (BL) mechanism. Meanwhile, helioseismology finds that the di↵erential rotation rate in the overshoot layer,
where the toroidal field is believed to be created and amplified (Spiegel & Weiss 1980; Van Ballegooijen 1982; Choudhuri
1990), decreases with the depth at the latitudes of solar activity belts. Thus it brings into question the role of the
dynamo wave played in the generation of the butterfly diagram.
The meridional flow provides another possibility responsible for the butterfly diagram. A poleward flow at the solar

surface was found, implying an equatorward return flow within the Sun according to the conservation of mass. The
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single-cell meridional flow with an equatorward flow at the base of the CZ is widely assumed. Flux transport dynamo
(FTD) models characterized by the key role played by such meridional flow (Wang et al. 1991; Durney 1995; Dikpati
& Charbonneau 1999; Chatterjee et al. 2004) successfully reproduce not only the butterfly diagram, but also other
basic features of the solar cycle. Most FTD models incorporate the BL source term, whose ↵-e↵ect is positive in
the northern hemisphere based on observations. So the dynamo wave in such models is poleward at low latitudes.
The return flow at the base of the CZ could overwhelm the poleward dynamo wave to generate the butterfly diagram
(Choudhuri et al. 1995).
However, helioseismological results indicate that the meridional flow might not satisfy the requirement of the FTD

models. Hathaway (2012) find a shallow return flow 50 - 70 Mm beneath the surface. The helioseismic inversion from
Zhao et al. (2013) also shows a shallow equatorward return flow located between 0.82 and 0.91 R�. They further
suggest a second meridional circulation cell below the shallower one. The second cell has a poleward flow at the base
of the CZ. Results from Schad et al. (2013) indicate that the flow profile has a complex spatial structure consisting of
multiple flow cells distributed in depth and latitude. Although recently Gizon et al. (2020) infer that the meridional
flow is a deep single cell in each hemisphere, which is consistent with the prerequisite of FTD models, its final profile
is still an open question. Magnetohydrodynamic simulations do not provide a conclusive result either. Hotta et al.
(2022) show that the meridional flow has a double-cell profile. But most simulations (e.g., Featherstone & Miesch
2015; Brun et al. 2017; Passos et al. 2017; Guerrero et al. 2019) show complex multicelled flow profiles in radial and
latitudinal directions. And the profiles vary significantly from one model to another.
Abovementioned divergent profiles of meridional flow conflict with the requirement of FTD models. This situation

poses a challenge to the understanding of the solar cycle in the framework of the FTD, especially to the reproducing
of the butterfly diagram. Hazra et al. (2014) find that the butterfly diagram could be reproduced well in FTD models,
providing the bottom flow at low latitudes is equatorward. Although this result relaxes the requirement on the specific
profile of the meridional flow at the bulk of the CZ, the equatorward flow at its base is still a necessary condition,
which cannot be guaranteed based on the current understanding of the flow. So new mechanisms for the butterfly
diagram are needed. The latitudinal pumping (Guerrero & de Gouveia Dal Pino 2008; Hazra & Nandy 2016) and the
dynamo wave in the near-surface shear layer (Pipin & Kosovichev 2011; Karak & Cameron 2016) were suggested as
the candidates of the mechanism for the butterfly diagram.
In this paper, we will explore the e↵ect of the latitude-dependent radial transport of the poloidal field on the

latitudinal migration of the toroidal field at the base of the CZ, under di↵erent meridional flow profiles (deep single
cell, shallow single cell, and double cell). We will demonstrate that the butterfly diagram could be attributed to the
latitude-dependent radial transport of poloidal flux. The solar dynamo has obtained strong observational evidence
to be of the BL type (Dasi-Espuig et al. 2010; Kitchatinov & Olemskoy 2011; Cameron & Schüssler 2015; Jiao et al.
2021), whose essence is that the poloidal field is regenerated by the evolution of the tilted sunspot groups on the solar
surface. Jiang et al. (2013) construct an FTD model whose BL-type source term is based on the simulated solar surface
large-scale field during cycles 15-21. Such kind of data-driven source term captures the essence of the BL mechanism
and makes the surface evolution of poloidal flux as realistic as possible in the model. Meanwhile, the free parameters
of the dynamo model are minimized. Such a model is helpful for us to concentrate on the transport process of the
poloidal field and on the latitudinal distribution and time evolution of the toroidal field. Therefore, we will adopt the
data-driven FTD model given by Jiang et al. (2013) to clarify the new mechanism for the butterfly diagram.
The paper is organized as follows. The data-driven BL-type dynamo model is described in Section 2. The simulations

considering di↵erent meridional flows are presented in Section 3.1. We demonstrate how the new mechanism operates
in Section 3.2. We summarize our results in Section 4.

2. MODEL

The axisymmetric large-scale magnetic fields and flow profiles are expressed in spherical coordinates as

B(r, ✓, t) = B(r, ✓, t)ê� +r⇥ [A(r, ✓, t)ê�] , (1)

u(r, ✓) = r sin ✓⌦(r, ✓)ê� + up(r, ✓), (2)

where B(r, ✓, t)ê� and r⇥ [A(r, ✓, t)ê�] represent the toroidal and poloidal components of the magnetic fields, respec-
tively. The large-scale flow fields, i.e., the meridional flow and the angular velocity, are denoted by up(r, ✓) and ⌦(r, ✓),
respectively. In the kinematic framework, the BL-type dynamo equations for the poloidal and toroidal magnetic fields
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Figure 1. Latitudinal velocities of the meridional flow used in the paper. (a) Deep single cell. (b) Shallow single cell. (c)
Double cell.

(for reviews, see Charbonneau 2020) are expressed as

@A

@t
+

1

r sin ✓
(up ·r)(r sin ✓A) = ⌘

✓
r2 � 1

r2 sin2 ✓

◆
A+ SBL, (3)

@B

@t
+

1

r


@(rurB)

@r
+

@(u✓B)

@✓

�
= ⌘

✓
r2 � 1

r2 sin2 ✓

◆
B + r sin ✓(Bp ·r⌦) +

1

r

d⌘

dr

@(rB)

@r
, (4)

where ⌘ represents the turbulent di↵usivity, and SBL is the BL-type source term for the poloidal field.

2.1. Data-driven source term

The BL-type source term SBL corresponds to the newly generated poloidal field at the solar surface due to the decay
of tilted sunspot groups. The observed magnetogram is a direct choice to construct this source term. However, the
available continuous magnetograms just cover the recent four sunspot cycles. Meanwhile, sunspot records have a much
longer history. Based on the historical sunspot records Cameron et al. (2010) construct the BL-type source term from
1913 to 1976 using surface flux transport models. Jiang et al. (2013) apply this data-driven source term into an FTD
model. Here we follow Jiang et al. (2013) to deal with the source term SBL.

2.2. Meridional flow

In this study we consider three typical profiles adopted by the literature and will demonstrate that our results are
not sensitive to the inner profiles of the flow. The three profiles are (i) a deep single-cell flow as same as the profile
used by Dikpati et al. (2004) and Cameron et al. (2012), i.e., Eqs. (11)-(16) of Cameron et al. (2012); (ii) a shallow
single-cell flow; and (iii) a double-cell flow as same as the profiles used by Hazra et al. (2014). The latter two profiles
correspond to Eqs. (10)-(12) of Hazra et al. (2014). The only exception from them is that the amplitudes of the
meridional flows used in this study are 11 m s�1 at the surface.
Figure 1 shows the latitudinal velocities of the three profiles. For the deep single-cell flow the penetration depth is

0.7 R�, and the return equatorward flow starts from 0.8 R�. For the shallow single-cell flow, the penetration depth is
0.8 R�, and the return equatorward flow starts from 0.9 R�. For the double-cell flow, there are two cells stacked along
the radial direction. The poleward flow locates between 0.7 and 0.78 R�, and the equatorward flow locates between
0.8 and 0.9 R�.

2.3. Turbulent radial pumping

Recently people are gradually aware of the important roles that radial pumping plays in the dynamo process (Guer-
rero & de Gouveia Dal Pino 2008; Cameron et al. 2012; Kitchatinov & Olemskoy 2012; Karak & Cameron 2016;
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Kitchatinov & Nepomnyashchikh 2016; Karak & Miesch 2017; Zhang & Jiang 2022). Magnetohydrodynamic simula-
tions indicate a latitude-dependent radial pumping, that is, the higher the latitudes are, the stronger the pumping
amplitude is (Brandenburg et al. 1992; Ossendrijver et al. 2002; Käpylä et al. 2006; Hotta et al. 2022). In this study,
we adopt two kinds of radial pumping.
We adopt a latitude-independent pumping for the first case. That is

�(r) =
�cz
2


1 + erf

✓
r � 0.7R�
0.02R�

◆�
+

�s � �cz
2


1 + erf

✓
r � 0.9R�
0.02R�

◆�
, (5)

where �cz = -1.8 m s�1 and �s = -30.0 m s�1, which are the pumping strength in the CZ and near surface, respectively.
In the second case, we adopt a latitude-dependent radial pumping by adding a | cos ✓| term to Eq.(5). That is,

�l(r, ✓) = �(r)| cos ✓|. (6)

The pumping e↵ect could be viewed as a velocity field adding to the meridional flow, so we replace up as up+�(r)êr
or up + �l(r, ✓)êr in the dynamo Eqs.(3) and (4).

2.4. Other ingredients

Except the new profiles of the meridional flow and radial pumping listed in subsections 2.2 and 2.3, other ingredients
of the model are kept the same as that in Jiang et al. (2013). The ingredients include the profiles of di↵erential
rotation and di↵usivity, boundary conditions, and initial conditions. The numerical simulation is computed using the
code SURYA developed by A.R. Choudhuri and his colleagues (Dikpati & Choudhuri 1994; Chatterjee et al. 2004).

3. RESULTS

3.1. E↵ects of the latitude-dependent radial flux transport

In this section, we will explore how the latitude-dependent radial transport of the poloidal flux a↵ects the latitudinal
migration of the toroidal fields at the base of the CZ, under di↵erent profiles of meridional flows. Figure 2 shows the
time–latitude diagrams of the toroidal field at r = 0.715 R�. And panels from top to bottom correspond to the three
flow profiles shown in Figure 1. Figures 2(a) - (c) correspond to Case 1 adopting the latitude-independent pumping,
while Figures 2(d) - (f) correspond to Case 2 adopting the latitude-dependent pumping. The periods of these solutions
slightly change over cycles but are around 11 yr regardless of the profiles of meridional flow. This is because the cycle
period is dominated by the inherent periodicity of the data-driven source term.
The simulation shown in Figure 2(a) is similar to the reference case shown in Figure 4 of Jiang et al. (2013) since

they have almost the same parameters. The basic features of the sunspot cycle are reproduced well. For instance,
the toroidal fields at low latitudes propagate toward the equator and form the butterfly-like pattern, caused by the
equatorward transport of toroidal flux under the e↵ect of equatorward return meridional flow.
However, when the meridional flow is the shallow single or double cell, the solution does not show the butterfly-like

pattern anymore. This is expected, as presented in previous studies (e.g., Hazra et al. 2014). For the solution shown in
Figure 2(b), there is no large-scale flow at the base of the CZ since the penetration depth of the meridional flow only
extends to 0.8 R�. At low latitudes, the poleward propagation of the toroidal field is caused by the dynamo wave. But
in comparison with Figure 1(c) of Hazra et al. (2014), the poleward propagational trend is weaker. This is because
of the data-driven source term in our model. The observed surface poloidal field source includes some time di↵erence
at di↵erent latitudes, which delays the generation of the toroidal field at lower latitudes. This e↵ect counteracts the
e↵ect of the dynamo wave, which causes the weaker trend. For the solution shown in Figure 2(c), the meridional
flow at the base of the CZ is poleward. This poleward flow works with the poleward dynamo wave. Hence a stronger
poleward propagational tendency than that shown in Figure 2(b) is obtained. The latitudinal migration of toroidal
fields is illustrated by the black curves.
Then we replace the latitude-independent radial pumping with latitude-dependent radial pumping. The correspond-

ing results are shown in Figures 2(d) - (f), which are prominently di↵erent from Figures 2(a) - (c). At latitudes lower
than ±50�, the toroidal fields all propagate toward the equator and form the solar-like butterfly diagrams. To explore
if the butterfly diagrams shown in Figures 2(d) - (f) match the real sunspot butterfly diagram, we superimpose the
corresponding time evolution of sunspots’ latitudes onto the toroidal field. We zoom in on the butterfly wings shown
in Figures 2(d) - (f). The corresponding results are presented in Figures 2(g) - (i). The toroidal field evolution (in
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Figure 2. Time–latitude diagrams of the toroidal field at the base of the CZ, r = 0.715 R�. Panels from top to bottom
correspond to the three flow profiles shown in Figure 1. Left panels correspond to Case 1 adopting the latitude-independent
pumping. Right panels correspond to Case 2 adopting the latitude-dependent pumping. The butterfly wings during cycle 19
shown in panels (d) - (f) are enlarged, and the corresponding results are shown in panels (g) - (i). Black regions in panels (d) -
(i) show the time–latitude evolution of observed sunspots. The black curve is the centroid of the toroidal flux between 0� and
55� latitudes, representing the migration of toroidal fields.

red and blue) shown in Figures 2(h) and (i) almost overlap with that of sunspots (black dots, based on USAF/NOAA
data 1). And the propagation trend (represented by the black curve) is similar to the activity belt. Before the start
of each sunspot cycle, there are toroidal fields at higher latitudes, e.g., around ±50�. They could correspond to the
ephemeral regions observed at the solar surface.
In Figure 2(d) the maxima of the toroidal field and the maxima of the sunspot number show some time shift. See

also the enlarged details in Figure 2 (g). This is because the two mechanisms, equatorward meridional flow and
latitude-dependent radial flux transport, work together leading to the quick equatorward migration of the toroidal

1 http://solarcyclescience.com/activeregions.html
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Figure 3. Inward velocity distributions. Three panels correspond to that of Figure 1 with the addition of inward pumping of
Eq.(6). The black arrows indicate the transport time of the poloidal fields from the surface to the base of the CZ, at latitudes
10�, 40�, and 60�.

field. But it does not bring a significant decrease in the cycle period because the data-driven source term dominates
the cycle period.
The solutions shown in Figure 2 all have a strong toroidal branch near the poles. It results from the strong radial

shear in the tachocline at high latitudes, and is a common issue for FTD models that assume the toroidal fields are
regenerated in the tachocline. People usually conjecture that this branch does not lead to sunspot emergence based
on thin flux tube simulations (Caligari et al. 1995; Fan 2021).

3.2. Illustration of the potential new mechanism

The simulations in the last subsection suggest that the latitude-dependent radial flux transport is a potential mech-
anism for the butterfly diagram. We use Figure 3 to illustrate the velocity distributions of the inward transport of
the poloidal field. The three panels correspond to the three profiles of the meridional flow given in Figure 1 with
the addition of latitude-dependent pumping given by Eq.(6). We denote the time di↵erence of the flux transport
between ±40� and ±10� latitudes as �t. Both the pumping and meridional flow contribute to �t for each panel.
The di↵erent �t values among the three panels result from the di↵erent radial components of the meridional flow
profiles. The deep single-cell flow has the largest �t because the flow at higher latitudes has a prominent quicker
inward component than that at low latitudes as a whole. The other two flow profiles also have the high–low latitude
di↵erence although they are weaker. This indicates that our new mechanism for the butterfly diagram results from
not only the latitude-dependent pumping but also the latitude-dependent radial component of meridional flow. The
latitudinal migration pattern of the toroidal field depends on the competition between the meridional flow, the dynamo
wave, and the latitudinal-dependent radial transport of the poloidal field. The time scale for the double-cell flow to
transport the magnetic fields from ±10� to ±40� latitudes approximately is 20 yr. The time scale for the poleward
dynamo wave is about 10 yr. Hence for di↵erent flow profiles, the required �t is di↵erent to overpower the poleward
dynamo wave and poleward flow to generate the realistic butterfly-like pattern.
To further illustrate how the new mechanism for the butterfly diagram works, we present the snapshots of the

toroidal and poloidal field evolution in Figure 4 corresponding to Figure 2(h). Comparing with Figure 2 of Jiang et al.
(2013) using the deep single-cell flow, we may see the notably di↵erent processes leading to the latitudinal migration
of the toroidal field. In Figure 2 of Jiang et al. (2013), the toroidal field of a new cycle first appears around ±50�

latitudes due to the radial transport of the latitudinal component of the poloidal field B✓. Then the toroidal fields
are equatorward transported under the e↵ect of the equatorward return flow at the base of the CZ. In contrast, the
transport of the toroidal field does not exist in Figure 4. Toroidal fields at higher (lower) latitudes are generated earlier
(later) than that at lower (higher) latitudes. Thus the butterfly pattern of the toroidal field evolution is generated.
Figure 4(a) clearly shows that around ±60� latitudes the toroidal field of the old cycle is first canceled, and the toroidal
field of the new cycle is first generated due to the much quicker inward transport of the poloidal field. Figures 4(b) -
(e) show that the toroidal fields of the new cycle are gradually built up at lower and lower latitudes.

4. CONCLUSION

We have proposed a potential new mechanism for the butterfly diagram of the solar cycle. When latitude-dependent
radial transport of poloidal flux exists, the toroidal field at higher latitudes could be regenerated earlier than that
at lower latitudes. The time- and latitude-dependent regeneration of the toroidal field could cause the equatorward
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Figure 4. Snapshots of the toroidal and poloidal fields for the solution shown in Figure 2(e) (and also Figure 2(h)). The
red (blue) contours represent the positive (negative) toroidal field. Solid (dashed) lines represent clockwise (counterclockwise)
poloidal field lines. The panels (a) - (e) correspond to the years of 1954, 1957, 1960, 1963, and 1966, respectively, covering the
whole cycle 19.

migration of the toroidal field. The new mechanism opens the possibility to generate the butterfly diagram under
complex meridional flow patterns, even when the flow at the base of the CZ is poleward. The mechanism is distinct
from the popular one, which results from the equatorward transport of the toroidal flux led by the meridional flow.
In the present study, both the meridional flow and radial pumping contribute to the latitude-dependent radial

transport of the poloidal flux. The latitude-dependent radial pumping plays a major role. This does not mean
that the latitude-dependent radial pumping is a necessity for the model. Other latitude-dependent radial transport
mechanisms for the poloidal field could also help the model work. In addition, in the self-excited dynamo model
operating in the bulk of CZ developed by Zhang & Jiang (2022), they suggest another ingredient contributing to
the time- and latitude-dependent regeneration of the toroidal field, the latitude-dependent latitudinal shear. It is the
strongest at middle latitudes (⇠ 55�), which makes the time for building up the toroidal field at middle latitudes
shorter than that at lower latitudes. In the forthcoming work, we will systematically explore the factors contributing
to the time- and latitude-dependent regeneration of the toroidal field for the butterfly diagram. The behavior in the
self-excited dynamo models will also be investigated.

We sincerely thank the anonymous referee for the insightful comments and Robert Cameron for always valuable
discussions. The research is supported by the National Natural Science Foundation of China (grant Nos. 12173005
and 11873023).
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